Reinforcement Learning for Imitating Constrained Reaching Movements

نویسندگان

  • Florent Guenter
  • Micha Hersch
  • Sylvain Calinon
  • Aude Billard
چکیده

The goal of developing algorithms for programming robots by demonstration is to create an easy way of programming robots such that it can be accomplished by anyone. When a demonstrator teaches a task to a robot, he/she shows some ways of fulfilling the task, but not all the possibilities. The robot must then be able to reproduce the task even when unexpected perturbations occur. In this case, it has to learn a new solution. In this paper, we describe a system to teach to the robot constrained reaching tasks. Our system is based on a dynamical system generator modulated by a learned speed trajectory. This system is combined with a reinforcement learning module to allow the robot to adapt the trajectory when facing a new situation, for example in the presence of obstacles. keywords: Programming by Demonstration, Reinforcement Learning, Dynamical Systems, Gaussian Mixture Model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full paper Reinforcement learning for imitating constrained reaching movements

The goal of developing algorithms for programming robots by demonstration is to create an easy way of programming robots such that it can be accomplished by anyone. When a demonstrator teaches a task to a robot, he/she shows some ways of fulfilling the task, but not all the possibilities. The robot must then be able to reproduce the task even when unexpected perturbations occur. In this case, i...

متن کامل

A Constructive Connectionist Approach Towards Continual Robot Learning

This work presents an approach for combining reinforcement learning, learning by imitation, and incremental hierarchical development. The approach is used in a realistic simulated mobile robot that learns to perform a navigation task by imitating the movements of a teacher and then continues to learn by receiving reinforcement. The behaviours of the robot are represented as sensation-action rul...

متن کامل

Continual Robot Learning withConstructive Neural

In this paper, we present an approach for combining reinforcement learning, learning by imitation, and incremental hierarchical development. We apply this approach to a realistic simulated mobile robot that learns to perform a navigation task by imitating the movements of a teacher and then continues to learn by receiving reinforcement. The behaviours of the robot are represented as sensation-a...

متن کامل

Continual Robot Learning with Constructive Neural Networks

In this paper, we present an approach for combining reinforcement learning, learning by imitation, and incre-mental hierarchical development. We apply this approach to a realistic simulated mobile robot that learns to perform a navigation task by imitating the movements of a teacher and then continues to learn by receiving reinforcement. The behaviours of the robot are represented as sensation-...

متن کامل

Minimizing endpoint variability through reinforcement learning during reaching movements involving shoulder, elbow and wrist

Reaching movements are comprised of the coordinated action across multiple joints. The human skeleton is redundant for this task because different joint configurations can lead to the same endpoint in space. How do people learn to use combinations of joints that maximize success in goal-directed motor tasks? To answer this question, we used a 3-degree-of-freedom manipulandum to measure shoulder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007